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COMMENT 

Averages over percolation clusters on a Cayley tree 
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Department of Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, 
UK 

Received 3 October 1986 

Abstract. Averages over percolation clusters r of the form Z , P ( r ) X ( r ) n ( r ) '  = x A ( p )  are 
considered, where n(T) is the number of sites in the cluster, X ( T )  is some property of the 
cluster an J P ( r )  is the probability per site of forming such a cluster at bond concentration 
p .  Then 

where U is the branching ratio of the Cayley tree 

This comment concerns averages over percolation clusters r of the form 

X k ( P ) =  ( n k ( w w h  (1) 

Here and below X(T) is some quantity defined for a cluster r and n ( T )  is the number 
of sites in the cluster r. For simplicity we assume that X ( T )  depends only on the 
topology of the cluster r and not on its detailed shape. In that case, the average over 
clusters, ( ), can be expressed as a sum over topologically inequivalent clusters: 

(2) (xu-)) = c p(r) w(r )x ( r ,  

where P ( T )  = ~ " ~ ( " ) ( l  - p ) " p ( ' ) ,  where nb(r) and n,(T) are the number of bonds and 
the number of perimeter bonds respectively of the cluster I'. In addition, W ( T ) ,  the 
weak embedding constant, is the number of clusters topologically equivalent to r which 
can be formed per site in the infinite lattice. When r is a single bond, W(T)=2/2,  
where z is the coordination number of the lattice. 

There is emerging interest in averages of the type (1 )  for general values of k. For 
instance, Essam and Bhatti (1985) have shown that the resistive susceptibility xR (Harris 
and Fisch 1977) (xR = (I;,,JR,,), where R,J is the resistance between nodes i and j when 
each occupied bond has unit resistance) is related to the characteristic relaxation time 
for diffusion on percolation clusters: 
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Here A,(T is the mth eigenvalue of the conductance or hopping matrix for the cluster 
T and the prime in (3)  indicates omission of the term with A, = 0. Recently Harris et 
a1 (1987) have given expressions for averages of the form (nP(T)Z& Am(T) -p )  in terms 
of higher-order resistance correlations. In  using such relations to calculate amplitude 
ratios on the Cayley tree (i.e. in order to reproduce mean-field theory), it is useful to 
know how these averages depend on the exponent to which n(T) is raised. From the 
fact (Essam 1972) that n(T)  scales like Ipc-pI-Ap, where Ap is the gap exponent for 
percolation and p c  is the critical concentration, one can predict that, for p + p c ,  

Here we develop an exact relation for the Cayley tree between Xk+l( p) and Xk( p) from 
which A is determined. 

From now on we consider a Cayley tree with branching ratio a = z - 1. Adding a 
bond to a cluster increases the number of perimeter bonds by ( a -  1). Thus in Xk(P), 
p appears in the combination p(1 -p)"-' and x l ( p )  is of the form 

Xk(P) = (1 -p)""F[p(l -p)"-']. (4) 

Thus we may write 

To verify (5) note that the large round bracket is of the form -f'(z)/f(z) where f(z) 
has a simple pole where z satisfies x = z( 1 - z)--l. We assume that x is small enough 
that only finite clusters exist. In that case, for x = p ( l  -p)"-l only the pole at z = p  is 
relevant and  the contour is chosen to surround this pole. Note that, since the contribu- 
tion to F ( x )  of order x"- '  comes exclusively from clusters of n sites, the quantity n 
can be generated by the operator ( a / a x ) x :  

The integrand in ( 6 b )  has a double pole at z = p whose contribution yields the form 
for Xk+l(P) quoted in the abstract. Ths relation can be regarded as a differential 
equation for Xk(p) whose solution yields the equivalent integral relation quoted in the 
abstract for Xk(P) in terms of Xk+l(p). 

As a simple application of the above results, take X(T) = n(T) and k = 0 in (1). 
Then ,yo( p )  is the probability that a site belongs to a finite cluster, so that ,yo( p) = 1 
for p < p c  = a-'. Use of the relation in the abstract for Xk+l( p )  yields the well known 
result for the percolation susceptibility, x,( p )  = ( n 2 ( r ) ) :  

Xl(P)=(l+P)l(l -UP). (7) 
Also, if Xk( p )  is singular, i.e. if Xk( p) - Alpc -PI-' with x > 0, then one has 

(U- 1) 
u3 -AX- IP-Pcl-x-2 
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consistent with the mean-field gap exponent, A, = 2. From this result one can obtain 
universal amplitude ratios (Aharony 1980, Adler et a1 1986), such as 

This result applies throughout the regime in which mean-field theory is valid, i.e. for 
d > 6 (Toulouse 1974, Harris et al 1975). 

Using ( 5 )  one can generate expressions for x ( N ) = ( x ( T ) G , , , . , , , ) ,  the value of X 
when the sum in (2) is restricted to clusters of exactly N sites. To get X ( N )  from 
xo(p),  one needs to isolate the contribution to F ( x )  in ( 5 )  of order x N - ' .  Then use 
of (4) yields 

(10) X (  N )  = 1 - p )  N r - N + *  f ( N )  

with 

where the contour surrounds z = 0. For instance, if we take X(T) to be 2,J RI, so that 
xo( p )  is the resistive susceptibility, ,yo( p )  = ( U  + l )p(  1 - UP)- ' ,  then one finds 

N - 2  ( N U - k ) !  
f ( N ) = ( U + l )  zo ( N - 2 - k ) ! ( N a -  N + 2 ) !  U .  

For small values of N one can check explicitly that f( N )  is indeed the value of the 
resistive susceptibility summed over diagrams with N sites. More generally, suppose 
that x0(p)  = A(l  -UP) -" .  Then for large N ,  ( 1 1 )  gives the result 

1 0 + 2  

U - 1  

where A = u " / ( u - ~ ) ~ - ' .  If we divide f ( N )  by the total number C ( N )  of a cluster 
of size N (Fisher and Essam 1961), C(N)=(U+~)(NU)!/[N!(NU-N+~)!], we 
obtain the average of X over clusters of size N as 

i""-)"-' " 2  

JT N ~ A  
( x ) N  = [(x/2) - l ] !  ( 1  + U - l )  2( U - 1 )  

For the percolation susceptibility ( 7 )  this gives, with x = 1 ,  A = ( 1  + U - ' ) ,  ( N') ,  = N 2 ,  
as expected. 

In summary, use of the relations given in the abstract allows one to evaluate exactly 
certain universal amplitude ratios within mean-field theory. Use of (14) allows one to 
calculate averages on the Cayley tree restricted to clusters of N sites. 
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